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Abstract Mathematical theory predicts that small changes in container shape or in contact

angle can give rise to large shifts of liquid in a microgravity environment. This phenomenon

was investigated in the Interface Configuration Experiment on board the USML-2 Space

Shuttle flight. The experiment's "double proboscis" containers were designed to strike

a balance between conflicting requirements of sizable volume of liquid shift (for ease of

observation) and abruptness of the shift (for accurate determination of critical contact

angle). The experimental results support the classical concept of macroscopic contact

angle and demonstrate the role of hysteresis in impeding orientation toward equilibrium.

1. Introduction

When planning space-based operations, it is important to be able to predict the equilib-

rium locations and configurations that fluids will assume in containers under low-gravity

conditions. Currently available mathematical theory applies completely, however, to only a

few particular configurations, such as the partially filled right circular cylindrical container

with liquid simply covering the base. Behavior in space for such a configuration, although

different from what is familiar in common experience with a terrestrial environment, is

at least consistent with that experience. For more general containers, however, fluids in

reduced gravity can behave in striking, unexpected ways.
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The classical theory, according to the Young-Laplace-Gauss (Y-L-G) formulation, char-

acterizes fluid locations as equilibrium configurations for the surface-plus-gravitational

mechanical energy. Using this point of view in a mathematical study, we have shown that

for a cylindrical container of general cross-section in zero gravity the surface change arising

from small changes in geometry or contact angle can be discontinuous or "nearly discon-

tinuous," leading to large shifts of the liquid mass. Attempts to observe this behavior

experimentally can be valuable as tests of validity of the concept of macroscopic contact

angle used in the classical theory, and thereby of the theory's effectiveness in predicting

fluid behavior.

The principal mathematical result underlying the behavior is that for particular cylindrical

sections a discontinuous kind of change can be realized as the contact angle 3' crosses a

critical value Ve intrinsic to the container. (In this paper we shall restrict subsequent

discussion, without loss of generality, to be in terms of a partially wetting liquid (0 <

V < 7r/2), which is the case for the materials used in the space experiment.) When 7 is

larger than V0 there exists an equilibrium configuration of liquid that covers the base of the

cylindrical container simply, while for contact angles smaller than "Y0 no such equilibrium

configuration is possible. In the latter case liquid moves to the walls and can rise arbitrarily

high along a part of the wall, uncovering a portion of the base if the container is tall enough.

By simple physical observation of bulk behavior of the liquid, one can thereby determine

whether the contact angle is larger than or smaller than the critical value for the container.

A practical challenge in this connection is to design cross-sections for which a large enough

portion of the liquid will rise up the walls for ease of observation as the critical value of

contact angle is crossed, without the containers being unrealistically tall, and so that the

change will be abrupt enough to allow accurate determination of critical contact angle

value.

By using two or more containers corresponding to appropriately chosen values of 7o, dif-

fering, say, by the accuracy desired for contact angle evaluation, one can determine the

value of the critical contact angle to lie within a particular interval. In some cases, ge-
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ometries can be "combined" into a single container for determining suchan interval. For

our Interface Configuration Experiment (ICE) on the secondUnited States Microgravity

Laboratory (USML-2) SpaceShuttle flight STS-73thesetwo approacheswere conjoined.

The experiment was conducted in the Glovebox, a multi-user facility developedby the

European SpaceAgency/ESTEC, Brunel Institute for Bioengineering(United Kingdom),

and Bradford Engineering (The Netherlands) for experimentson Spacelabmissionsor in

the Shuttle middeck. Originally designedto handle biological experiments, the Glovebox

has beenadapted to handle fluids, combustion,and material scienceexperimentsand has

servedwell as a rapid and inexpensiveplatform in which to conduct experimentsin space.

ICE utilized the Glovebox primarily as a staging area and a level of containment in the

event of a fluid spill.

Mathematical and computational results that form the basis for ICE, aswell asresults of

pre-flight drop towerexperiments,aredescribedin Chenet al. (1997). Someof theseresults

are included here for convenience,primarily in Sec. 2 and the figures therein. Further

mathematical background and historical information are given by Finn (1986) and by

Concusand Finn (1974, 1990). Somerelated work is describedby Langbein (1990, 1995)

and by Langbein et al. (1990). In addition to the containers reported here, ICE included

also a movable wedgecontainer, the results for which we plan to discussin a separate

study.

2. Mathematical and Computational Background

2.1 Canonical Proboscis Containers

The "double proboscis" containers used in the USML-2 experiment derive from the "canon-

ical proboscis" containers introduced by Fischer and Finn (1993). These, in turn, can be

thought of as generalizations of a basic wedge container (Fig. 1), a cylindrical container

whose section f_ consists of a circular arc and a smoothly joined protruding corner of
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interior angle 2a. For the wedge container the transition at the critical contact angle

"Yo = lr/2 - _ is sharp. For "Y0 _< "r < _ and for liquid volume sufficient to cover the

base, the height of the free surface S Can be given in closed form as a portion of a lower

hemisphere meeting the walls with the prescribed contact angle % Thus for given volume

of liquid the height is bounded uniformly in -y throughout this range. For 0 < _, < "Yo,

the liquid will move to the corner and rise arbitrarily high at the vertex P, uncovering the

base regardless of liquid volume. The behavior for the wedge domain is thus discontinuous

at "r -" "Yo. Physical procedures for determining critical contact angle in this container

can give very good accuracy for larger values of-y (closer to Ir/2) but may be subject to

experimental inaccuracy when -y is closer to zero, as the part of the section over which the

liquid accumulates when the critical angle "to is crossed then becomes very small and may

be difficult to observe.

The canonical proboscis containers provide a way of overcoming the above experimental

difficulty. These containers are cylinders whose cross-sections consist of a circular arc

attached symmetrically to a (symmetric) pair of curves described by

x+C = </to 2 _y2 + RosinTo In
x/Ro 2 _ y2 cos "Yo - Y sin-yo

/to + y cos-yo + x/Ro 2 - y2 sin 70
(1)

and meeting at a point P on the x-axis, see Fig. 2. Here/to, as well as the particular

points of attachment, may be chosen arbitrarily. The continuum of circular arcs Fo, of

which three are depicted by the dashed curves in Fig. 2, are horizontal translates of one

such arc, of radius/to and with center on the x-axis, and the curves (1) have the prop-

erty that they meet all the arcs F0 in the constant angle "Yo. The radius p of the circular

boundary arc can be chosen in such a way that 9'0 becomes the critical contact angle value

for the container. Specifically, one can show mathematically that a solution of the Y-L-G

equations governing the equilibrium liquid free-surface can exist in f_ if and only if "r > "to

and that the liquid height rises unboundedly as "r decreases to 0'0, precisely in the region

swept out by the arcs Fo (the entire proboscis region to the right of the leftmost arc Fo

shown in Fig. 2). Furthermore a unique value of p can be obtained for any prescribed



proboscis length, and there holds R0 cos 70 < P < 2Ro. Thus, the behavior is not strictly

discontinuous as for the basic planar wedge container--the liquid shifts increasingly toward

the proboscis wall as 7 decreases to 70--but it can be "nearly discontinuous".

Numerical solutions depicting such behavior are given by Concus et al. (1992) for some

canonical proboscis containers. For these containers the rise height in the proboscis can

be relatively modest until 7 decreases to values close to 70, and then becomes very rapid

as 7 decreases still further. Since the proboscis can be made relatively as large a portion

of the section as desired, the shift can be easily observed for a broad range of 70. Through

proper choice of the domain parameters for the cases considered, an effective balance can

be obtained between conflicting requirements of a sharp near discontinuity (for accurate

measurement) and a sizable volume of liquid rise (for ease of observation).

2.2 Double Proboscis Containers

The double proboscis containers for ICE are similar to the single proboscis one of Fig.

2, except that there is a second proboscis diametrically opposite to the first, in effect

combining two single proboscis containers into one. The values of 70 in (1) differ for

the left and right proboscides, whose values of 70 we denote by 7L and 7n, respectively.

Similarly, we denote the values of R0 for the left and right proboscides by RL and Rn.

These satisfy Ra cos 'Tn - RL cos 7L. The critical value for the container is the larger of 7/,

and 7n. For the discussion here, we shall take 7n > 7L, SO that the critical contact angle

"r0 for a container is equal to 7R-

The container cross-sections for the experiment, superimposed on one another, are shown

in Fig. 3. They have been scaled so that the circular portions all have radius unity. The

meeting points of the vertices with the x-axis are, respectively, a distance 1.5 and 1.6 from

the circle center. For the sections depicted in Fig. 3 the values of 7L and _R are respectively

20 ° and 26 ° for the outermost section, 30 ° and 34 ° for the middle section, and 38 ° and

44 ° for the innermost section.
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For these containers the explicit behavior has not been determined mathematically in

the complete detail that it has for the single probosciscontainers. However,numerical

computations and the known behavior of the singleproboscissolution surfacesindicate a

predicted behavior as follows: For contact angles7 >--"Y0,as 7 decreasesto "Y0the liquid

will rise higher in the right than in the left proboscis,with the rise becomingunbounded

in the right proboscisat "Y0. For contact angles between "YL and "YR the liquid will rise

arbitrarily high in the right proboscis, but the height in the left will still be bounded.

For smaller contact angles the liquid will rise up both proboscides arbitrarily high. By

observing the liquid shift, one can then bracket the contact angle relative to the values of

")'L and "YR. For a practical situation in which the container is of finite height with a lid on

the top, the liquid will rise to the lid along one or both of the proboscides in the manner

described above (provided the liquid volume is adequate); in some cases, liquid may then

travel along the corner at the lid and flow into the other proboscis from the top.

The selected values of "YL and "YR for the three containers are based on the value of approx-

imately 32 ° measured in a terrestrial environment for the contact angle between the ICE

experiment liquid and the acrylic plastic material of the container. The spread of values of

contact angle covered by the three containers is intended to allow observation of possible

effects of contact angle hysteresis, which is not included in the classical theory.

2.3 Computed Surfaces

The mathematical equations governing the free surface were solved numerically for the

three double proboscis container sections depicted in Fig. 3, for a range of contact angles %

to obtain details of the anticipated liquid behavior. It was adequate to compute solutions

for the upper-half domains only, because of the reflective symmetry. The adaptive-grid

finite-element software package PLTMG of Bank (1994) was used.

The numerically calculated solution surface for the upper half of the 30°/34 ° domain is

shown in Fig. 4 for four values of contact angle, 60 °, 50 °, 40 °, and 35 °. (The critical
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value for the domain is _/0 -- 34 °.) The three-dimensional views of the surface are color-

shaded by PLTMG to indicate contour levels, The viewpoint for each surface is the same.

Generally, the computations indicate that as 7 decreases toward the critical contact angle,

liquid moves toward and up the two proboscis walls, with the local maximum heights, as

calculated by the program, at the proboscis tips. The heights at the right are higher than

the corresponding ones at the left. The surfaces for the 20o/26 ° and 36°/44 ° proboscis

domains behave similarly.

One sees that the numerically computed rise height in the container is modest until "_ gets

close to the critical value. The computations indicate that using containers of sufficient

height (five for our containers), one could distinguish between the critical value _/o for the

container (liquid in right proboscis rises to the lid) and a contact angle value one degree

greater (liquid rise height less than five).

3. Experiment Results

All double proboscis vessels flown were similar in construction; the 38°/44 ° vessel is de-

picted in Fig. 5. The primary vessel components are a two-piece acrylic-plastic (transpar-

ent) body, an aluminum piston and control dial, a stainless steel drive screw, an aluminum

valve, and an aluminum base for securing the vessel to the experiment platform. O-ring

seals are employed throughout. The internal surfaces of the proboscis vessels were preci-

sion milled on a numerically-controlled machine using a diamond tipped cutting tool; the

coordinates were computed from (1). The critical surfaces were finished by an extremely

light polish ("wipe") using a dry cloth. These vessels were fabricated in halves divided by

the plane of symmetry, and the two halves were fused without corruption of the interior

corner at the joint. Post-fabrication calibration of the vessels revealed a mean tolerance

of less than 76#m for the proboscis shapes, as determined by the distance of the container

wall to the measured cylinder axis. Based on the maximum container dimension of 1.5cm,

compliance of the proboscis profiles with those determined mathematically were estimated

to be within :k0.5%.
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The general experimental procedure for ICE during the USML-2 flight was to partially fill

the selected vessels with prescribed volumes of fluid and to record with video cameras the

fluid interface configurations that resulted. The crew procedures for carrying out the ex-

periment consisted primarily of the steps: (1) unstow equipment, (2) set up Glovebox and

vessel, (3) charge vessel/activate, (4) observe stable surfaces, (5) disturb surface configura-

tion(s), (6) observe resulting surfaces, (7) repeat (5) and (6), and (S) reverse fill procedure

and stow. For the three vessels a total of approximately ninety minutes were required. The

Spacelab Camcorder and a Glovebox fuU-color 1:1 video camera were utilized. Devices for

the measurement of ambient Glovebox temperature and local acceleration levels were also

used. Fig. 6 shows crew member Fred Leslie conducting the experiment in the Spacelab

Glovebox during the mission.

To begin the experiment, a crew member retrieves the Spacelab Camcorder (Hi-Smm

format) and unstows the ICE vessel to be tested. A diffuse backlight panel provided

illumination for the video photography.

The test liquid for all the double proboscis vessels was an aqueous ethanol solution, 50%

by volume. This particular concentration was selected for the specific wetting conditions

desired. A red dye was added to enhance observations. The longtime "equilibrium" contact

angle for this liquid mixture on acrylic plastic in the presence of ethanol saturated air was

measured by the sessile drop method to be 32 ° + 2 °. The largest range of static contact

angle hysteresis measured for the liquid on a machined, lightly-polished acrylic surface

was 18 ° for the receding value and 43 ° for the advancing value by the tilt-slide method.

Mean values were 20 ° and 41 °, respectively, with an equilibrium value of "Yea -- 32°, all

values producing a consistent uncertainty of :k2 °. The density, kinematic viscosity, and

surface tension for the dyed aqueous ethanol solution were measured to be P0 - 896kg/m 3,

v = 2.75 × 10-6m2/s, and a = 0.0308N/m, respectively.

To carry out the fill procedure, the crew member pulled open the reservoir valve and turned

the control dial, displacing the entire liquid contents of the reservoir into the double pro-

boscis container (cf., Fig. 5). The liquid then assumed a particular "static" configuration



(not necessarilyan equilibrium configuration. A static configuration of an interface implies

a possibly metastablestate, common in partially wetting, contact-line-dominated situa-

tions exhibiting significant contact anglehysteresis,seeKistler (1993,p. 328)). Time was

allowed forthe configuration to stabilize (up to 5 min). The crewmemberthen disturbed

the surfaceby tapping the side of the container with his finger, lightly at first and then

subsequentlywith increasingforce. All new surfacesthat formed in the container during

the tapping processweregiven time to stabilize and werecaptured on video. The tapping,

which led eventually to larger scalerocking and sloshing, produced different results for

eachof the three containers.These resultsare discussedbelow.

3.1 Vessel ICE-P1

The first vesseltested was ICE-P1, the 20°/26° vesselas depicted in Fig. 3. Both pro-

boscidesfor this vesselare subcritical for the q,_q- 32° liquid. Fig. 7 showstwo static

interface shapesfor the vessel:Fig. 7awas taken shortly after the fill procedurewascom-

pleted, and Fig. 7bwastakenafter significantdisturbancesto the vesselhad beenimparted

by the payload specialist. Very little changein the interface can be distinguishedbetween

initial and final states,even though significant disturbanceswere imparted. This is in ac-

cordwith the mathematical predictions,asthe measuredequilibrium contact angle32°±2 °

is greater than the critical anglesfor both proboscides. A somewhatelevatedsurface in

the righthand 26° proboscisis anticipated, relative to the lefthand one,as its critical angle

is closerto the value %q = 32 ° (cf., Fig. 4). Imparting larger disturbances might possibly

have "released" the liquid to end up with a somewhat larger height difference between

the two probscides, as in, say, the 40 ° case in Fig. 4, but, generally, the video indicated

much more stable behavior for this vessel than for the subsequent ones described below.

For vessel P1, and also for vessels P2 and P3, the initial static interface shapes prior to

the initiation of disturbances were observed to be largely the same as the terminal ones

observed in the pre-flight drop tower tests reported in Chen et al. (1997).
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3.2 Vessel ICE-P2

The lefthand/righthand proboscides for this vessel are the 30o/34 ° ones, so that the left-

hand proboscis is subcritical with respect to _/eq = 32 °, while the righthand one is super°

critical. A series of static interfaces formed during the test sequence is shown in Fig. 8.

Fig. 8a is taken shortly after completion of the fill procedure. Figs. 8b, 8c, and 8d are

images of static interface configurations after successive disturbances to the vessel by the

payload specialist. For this test, once the liquid fill was completed, light taps on the side of

the container produced small, high frequency surface waves, but did not lead to observable

bulk reorientation of the liquid. As the disturbances were increased in magnitude, how-

ever, instead of returning to the initial state of Fig. 8a (as was the case for vessel ICE-P1

in Fig. 7) the liquid rose noticeably and somewhat equally in the proboscides (Fig. 8b).

After allowing sufficient time for stabilization, the crew member repeated the disturbances

to the vessel, but not increasing them in magnitude. Each disturbance was imparted by

a single "push" (impulse) to the top lefthand side of the vessel which acted to rock the

interface with a mean amplitude A of approximately 4mm over a 0.4s interval td. Thus, a

mean dynamic Bond number Bo -- poaR2/a - 0.33 may be computed, where a is the ef-

fective acceleration of the disturbance (a - 2A/t2d assumed constant), R is a characteristic

dimension of the container, in this case the radial distance to the vertex of the proboscides

(- 0.015m), and P0 and a are respectively the density and surface tension of the liquid.

The interface responded to the impulse disturbance with approximately 1.3Hz damped

oscillations that decayed within 10s. The interface was allowed time to stabilize between

each disturbance.

As seen in Figs. 8c and 8d, subsequent, larger disturbances, carried out to explore further

the initial liquid rise, led to an increased rise only in the 34 ° righthand supercritical

proboscis. The penetration of the liquid into the righthand proboscis took place regardless

of whether the disturbances to the cell were applied to the top righthand or lefthand side

of the vessel. This result indicates, somewhat dramatically, that the slight differences in

proboscis fabrication, which were designed to produce unbounded flow up the righthand
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proboscisonly, do influencefluid behavior strongly, evenin the presenceof hysteresis. In

practice, however,significant disturbances(_ 0.05m/s2, Bo - 0.3) were necessary in order

to overcome contact angle hysteresis and bring about the large shifts of liquid depicted

in Figs. 8c-d. (Remark: When Bo>l, destabilization and break-up of the surface can

be anticipated experimentally, as described by Masica et al. (1964). For the inverted

circular cylinder, numerical studies by Concus (1968) indicate similar stability limits.)

It is astonishing that though the hysteresis range for the test liquid is 20 ° <_ "_ _< 41 °,

the interface behaved in a manner that is in accord with the mathematical predictions

based on the idealized Y-L-G theory using a value %q - 32 °. It is also striking that the

uncertainty of -1-2° for Tea did not mask the effect of the subtle differences in the left and

right proboscides designed for the 30o/34 ° critical angles.

3.3 Vessel ICE-P3

Both proboscides for the third vessel, the 38°/44 ° one, are supercritical for the test fluid.

Therefore, the mathematical predictions are that the liquid should rise spontaneously to

the lid in both left and right proboscides. Because the right proboscis is more supercritical

than the left, greater/faster rise may be anticipated there. A series of images, similar

to those in Figs. 8a-d, are presented for vessel ICE-P3 in Fig. 9. Fig. 9a shows the

interface after completion of the fill procedure, and Figs. 9b, 9c, and 9d show interfaces

after subsequent disturbances to the vessel. Again, each image displays the liquid in a static

state. Disturbances to this vessel caused large shifts of the liquid up both proboscides,

with more up the righthand proboscis. The liquid continued to penetrate higher in each

proboscis regardless of the direction of the impulse disturbance. These results are in

accordance with the predictions, except that the liquid did not move spontaneously m

significant disturbances (Bo<0.3) were necessary to bring about equilibrium-type behavior

within the approximately 20 minutes allowed for the experiment.

After completion of the ICE-P3 procedures (Fig. 9d), the crew placed the vessel (delicately)

in the aft end cone of the Spacelab module, where it was allowed to remain for seven days.
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During this time it wasobservedthat the liquid continued to creep,though very slowly,

toward the end state configuration of Fig. 10, which was photogr.aphedwith a 35mm

camera at the end of the seven days. The lighting is not as favorable here, but the liquid

free surface can still be easily identified. The liquid is seen to have risen further in the

lefthand proboscis (cf., Fig. 9d), while the liquid in the righthand proboscis rose to the lid,

covered it, at least partially, and then started advancing down the lefthand proboscis. The

Y-L-G equilibrium state requires that the base, lid, and entire length of both proboscides

be wet by the liquid. (The isolated drop in the lower left quadrant of Fig. 10 was present

prior to the long term storage (see Fig. 9d).)

These findings suggest that the theory can indeed be successful in predicting fluid behav-

ior, if sufficient time is available to establish equilibrium. The time required to reach the

configuration in Fig. 10 may have been lessened by existing mechanical and thermal distur-

bances, the latter hastening migration of the liquid toward equilibrium through successive

evaporation and condensation, a process (associated with Kelvin energy) not included in

the Y-L-G theory. Figs. 9d and 10 show that the fluid bulk remained connected and that

condensate drops on the container walls, common in many partial wetting systems subject

to temperature cycling on Earth, were not present. We note that liquid near the pro-

boscis tip in the cases for which the theory predicts the liquid still should be advancing

(right proboscis in Figs. 8c-d, both proboscides in Figs. 9c-d), resembles the convex shape

computed by Weislogel and Lichter (1997) for the tip of a spreading liquid drop in a wedge.

The above results provide insight into the role of container geometry, contact angle, contact

angle hysteresis, input disturbances, and length of time in predicting interface configura-

tions. What is clearly established is the role of hysteresis near critical values for which

slight changes in container geometry result in large changes in interface configuration.

Hysteresis is found not to prevent the predicted behavior, but only to noticeably impede it.

Significant perturbations to the interface are necessary to "encourage" the fluid to behave

as predicted in reasonably rapid time.
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4 Conclusions

The USML-2 ICE experiment shows in a striking way the discontinuous type of behavior

for the double proboscis containers at the predicted critical angles. Even though hysteresis

was large and surface friction impeded reorientation of the liquid, the mathematically

predicted behavior at critical contact angle was observed. This lends credence to the

validity of the concept of macroscopic contact angle and its Y-L-G formulation as tools for

predicting fluid behavior.
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Figure Captions

Fig. 1. Wedge container.

Fig. 2. Proboscis container section showing three members of the continuum of extremal

aXES.

Fig. 3. Three superimposed double proboscis container sections. From outermost to

innermost, the pair of values of "Y0 for the left and right proboscides of each section aXe

200/26 °, 300/34 °, and 38°/44 °.

Fig. 4. Computed equilibrium interface for the 30°/34 ° (upper-half) double proboscis

section for contact angles 60 °, 50 °, 40 °, and 35 °. 70 = 34°-

Fig. 5. 38°/44 ° proboscis vessel (flight unit, ICE-P3): 1 proboscis container, 2 control

dial, 3 piston/plunger, 4 reservoir valve, 5 fill pas.sage.

Fig. 6. Payload Specialist Fred Leslie conducting ICE-P2 test in Spacelab Glovebox

facility: 1 video monitor, 2 Glovebox, 3 proboscis vessel, 4 Spacelab camcorder.

Fig. 7. Static interface shapes for ICE-P1 (20°/26 °) vessel. 7a (left): after completion of

fill; 7b (right): after disturbances by payload specialist.

Fig. 8. Static interface shapes for ICE-P2 (30°/34 °) vessel. 8a (upper left): after com-

pletion of fill; 8b (upper right), 8c (lower left), and 8d (lower right): after successive

disturbances by payload specialist.

Fig. 9. Static interface shapes for ICE-P3 (38°/44 °) vessel. 9a (upper left): after comple-

tion of fill; 9b (upper right), 9c (lower left), and 9d (lower right) after successive distur-

bances by payload specialist.

Fig. 10. Static interface shape for ICE-P3 (38°/44 °) vessel one week after that shown in

Fig. 9d.
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